
AD-A253 892IIIIIIIii

Fractal Image Encoding

SBIR Phase II
Quarterly Report

Contract #N00014-91-C-0117

DTIC
ELECTE
AUG 10 1992 U

Yuval Fisher
Albert Lawrence

NETROLOGIC, Inc.

July 31, 1992

Tis document has ben aove
for public release and sale, itsdistrbutio is un d . 92-21203- iIfhUUhUm
)2 8):; -,

To: Office of Naval Research , Dr. M. Schlesinger, 800 N. Quincy St., Arlington, VA 22217-5000

From: NETROLOGIC, Inc., 5080 Shoreham Place, Suite 201, San Diego, CA 92122-5932

FRACTAL IMAGE COMPRESSION

Progress Report April 1, 1992-July 31, 1992

SUMMARY

During the months April-July, work continued in color encoding and the optimization of the
algorithms. In addition to improvements in the rectangular encoding method and development of
pyramid methods, we are also investigating use of the fast Fourier transform (FFT) in finding the
affine transforms which encode an image.

We also continued our cooperation with the group at Foster Miller. Work perfornied by this group
was reported at the SPIE meeting in San Diego, July 19-26.

Course notes from a course to be given at SIGGRAPH '92 by Dr. Yuval Fisher are included in
this quarterly report. These notes specifically detail the concepts and methodology of the image
compression methods developed under this Phase II grant. The notes are addressed to a lay but
educated audience.

IMAGE COMPRESSION

The compression work consisted of completing the encoding of color, an optimization phase of the
rectangular partition method, and development of pyramid methods.

Color. We have completed the work on color with good results. The method employed used an
oct-tree to partition the RGB color space into 8 octants. Decoded colors are entered in the tree and a
best color is chosen from representative tree values. This is a fast and efficient method which can
be used to select a best color map entry given a RGB value, or alternatively, the method can be
used to select an optimal choice for the color map entries given the collection of all RGB values
generated by the decoded image.

Rectangular Partitioning. We have begun optimization of the rectangular partitioning method.
Details of this method can be found in the course notes. The focus of the current work is to find a
way to partition an image recursively into rectangles in such a way that rectangles at different levels
of the partition (and hence at different scale lengths) will share some self similar properties.

Pyramid Methods. We are in the process of investigating methods which attempt to decrease
encoding and decoding time while reducing error. The idea is as follows. An image is highly
compressed using the fractal scheme. The error is then affinely transformed and compressed again.
The second order error is again compressed and so on. Since the fractal scheme seeks self
similarity within the image, the error image should compress itself well, and this is true for the
second order error as well, etc. Speed is gained since the compressions are high, requiring a small 0
number of transformations and much fewer comparisons. Decompression speed may also 0
decrease, though there are more images to decode in this case (but each with a small number of
transformations). eZi"A 4' 0 0 3

FFT Methods. We have developed an FF'T code for comparing domain and range tiles. The
FFT replaces a large portion of the innermost loop of our present code. In essence, the code
replaces repeated computation of cross correlations by a single computation, based on the :es
convolution property of the Fourier transform. By taking advantage of the fact that one of the

DTIC QTUALTTV TN8PMCTED S

inputs to the convolution computation is mostly zero and the fact that the FF1" of the image need
only be computed once, we can reduce the convolution to one FFT per domain tile. We are
presently conducting benchmaik studies to determine the performance of this technique.

IMAGE DECODING

During this quarter the decompression algorithm was significantly optimized. The algorithm now
handles color, smoothing to eliminate artifacts, and sampling or averaging of domain pixels onto
the range pixels. This algorithm decodes in roughly 6 seconds on 16MHz PC's without a
coprocessor and in roughly I second (2 seconds for color images) on 486 machines. This is a
substantial and significant improvement over the previous decoding times. We feel that this brings
the method to a level suitable for marketing as a product.

Fractal Image Compression
SIGGRAPH '92 Course Notes

Yuval Fisher
Visiting the Department of Mathematics
Technion Israel Institute of Technology

from
The San Diego Super Computer Center

University of California, San Diego

With the advance of the information age the need for mass information storage and
retrieval grows. The capacity of commercial storage devices, however, has not kept pace
with the proliferation of image data. Images are stored on computers as collections of
bits (a bit is a binary unit of information which can answer one "yes" or "no"' question)
representing pixels, or points forming the picture elements. Since the human eye can
process large amounts of information, many pixels - some 8 million bits' worth - are
required to store even moderate quality images. These bits provide the "yes" or "no")

answers to 8 million questions that determine the image, though the questions are not the
"is it bigger than a bread-box" variety, but a more mundane "What color is this pixel."

Although the storage cost per bit is currently about half a millionth of a dollar, a family
album with several hundred photos can cost over a thousand dollars to store! This is one
area in which image compression can play an important role. Storing the images in less
memory leads to a direct reduction in cost. Another useful feature of image compression
is the rapid transmission of data; less data requires less time to send.

So how can image data be compressed? Most data contains some amount of redun-
dancy, which can sometimes be removed for storage and replaced for recovery, but this
redundancy does not lead to high compression. Fortunately, the human eye is not sensi-
tive a wide variety of information loss. That is, the image can be changed in many ways
that are either not detectable by the human eye or do not contribute to "degradation" of
the image. If these changes are made so that the data becomes highly redundant, then the
data can be compressed when the redundancy can be detected. For example, the sequence
2, 0, 0, 2, 0, 2, 2, 0, 0, 2, 0, 2,... is similar to ,1,1,1,1 ... , but contains random fluctuations
of ±1. If the latter sequence can serve our purpose as well as the first, we are better off
storing it, since it can be specified very compactly.

The standard methods of image compression come in several varieties. The current
most popular method relies on eliminating high frequency components of the signal by
storing only the low frequency Fourier coefficients. Other methods use a "building block"
approach, breaking up images into a small number of canonical pieces and storing only a
reference to which piece goes where. In this article, we will explore a new scheme based on
fractals. Such a scheme has been promoted by M. Barnsley, who founded a company based
on fractal image compression technology but who has not released details of his scheme.
The first publically available such scheme was due to E. Jacobs and R. Boss of the Naval
Ocean Systems Center in San Diego who used regular partitioning and classification of
curve segments in order to compress random fractal curves (such as political boundaries)

in two dimensions [BJ], [JBF]. A doctoral student of Barnsley's, A. Jacquin, was the first to
publish a similar fractal image compression scheme [J]. An improved version of this scheme
along with other schemes can be found in work done by the author in [FJB], [JFB], and

[FJB1].
We will begin by describing a simple scheme that can generate complex looking fractals

from a small amount of information. Then we will generalize this scheme to allow the
encoding of an images as "fractals", and finally we will discuss some of the ways this
scheme can be implemented.

§1 What is Fractal Image Compression?

Imagine a special type of photocopying machine that reduces the image to be copied
by a half and reproduces it three times on the copy. Figure I shows this. What happens
when we feed the output of this machine back as input? Figure 2 shows several iterations
of this process on several input images. What we observe, and what is in fact true, is that

all the copies seem to be converging to the same final image, the one in 2(c). We call this
image the attractor for this copying machine. Because the copying machine reduces the
input image, any initial image will be reduced to a point as we repeatedly run the machine.
Thus, the initial image placed on the copying machine doesn't effect the final attractor;
in fact, it is only the position and the orientation of the copies that determines what the
final image will look like.

Figure 1. A copy machine that makes three re-
duced copies of the input image.

(a) 0 00

(c)AAAA(bA A

Initial Image Firm Copy Scond Copy Third Copy

Figure 2. The first three copies generated on the
copying machine of figure 1.

Since it is the way the input image is transformed that determines the final result
of running the copy machine in a feedback loop, we only describe these transformations.
Different transformations lead to different attractors, with the technical limitation that the

2

CONTRACTIVE TRANSFORMATIONS

A transformation w is said to be contractive if for any two points P1 , P2 , the distance

d(w(Pi), w(P 2)) < ad(P1 , P2)

for some a < 1. This formula says the application of a contractive map always brings
points closer together (by some factor less than 1). This definition is completely general,
applying to any space on which we can define a distance function d(P, P2). In our case, we
work in the plane, so that if te points have coordinates P = (z1,y) and P2 = (' 2 ,Y2),
then

d(P1, PI) = -V(X2 - X")2 + (y2~ - l2

An example of a contractive transformation of the plane is

which halves the distance between any two points.
Contractive transformations have the nice property that when they are repeatedly

applied, they converge to a point which remains fixed upon further iteration (See the
Contractive Mapping Fixed Point Theorem box). For example, the map wn above applied
to any initial point (Z,y) will yield the sequence of points (Ixly),(4,. wh2 ~) 2 (4 4 Y),.... which can

be seen to converge to the point (0, 0) which remains fixed.

transformations must be contractive - that is, a given transformation applied to any two
points in the input image must bring them closer together in the copy. (See the Contractive
Transformations Box). This technical condition is very natural, since if points in the copy
were spread out the attractor would have to be of infinite size. Except for this condition,
the transformations can have any form. In practice, choosing transformations of the form

Wi[] = [ai 1j [i;] + [i
is sufficient to yield a rich and interesting set of attractors. Such transformations are called
affine transformations of the plane, and each can skew, stretch, rotate, scale and translate
an input image; in particular, affine transformations always map squares to parallelograms.

Figure 3 shows some affine transformations, the resulting attractors, and a zoom on
a region of the attractor. The transformations are displayed by showing an initial square
marked with an "1==" and its image by the transformations. The "L=" helps show when a
transformation flips or rotates a square. The first example shows the transformations used
in the copy machine of figure 1. These transformations reduce the square to half its size
and copy it at three different locations in the same orientation. The second example is very
similar to the first, but in it, one transformation flips the square resulting in a different
attractor. The last example is the Barnsley fern. It consists of four transformations, one
of which is squished flat to yield the stem of the fern.

3

Figure 3. Transformations, their attractor, and a
zoom on the attractor.

A common feature of these and all attractors formed this way is that in the position
of each of the images of the original square on the left there is a transformed copy of the
whole image. Thus, each image is formed from transformed (and reduced) copies of iteslf,
and hence it must have detail at every scale. That is, the images are fractals. This method
of generating fractals is due to John Hutchinson [H], and more information about many
ways to generate such fractals can be found in books by Barnsley [B] and Peitgen, Saupe,
and Jurgens [Pl,P2].

Barnsley suggested that perhaps storing images as collections of transformations could
lead to image compression. His argument went as follows: the fern in figure 3 looks com-
plicated and intricate, yet it is generated from only 4 affine transforation. Each affine
transformation wi is defined by 6 numbers, ai, bi, c i , di, ei and fi which do not require
much memory to store on a computer (they can be stored in 4 transformations x 6 num-
bers/transformation x 32 bits/number = 768 bits). Storing the image of the fern as a
collection of pixels, however, requires much more memory (at least 65,536 bits for the
resolution shown in figure 3). So if we wish to store a picture of a fern, then we can do it
by storing the numbers that define the affine transformations and simply generate the fern
when ever we want to see it. Now suppose that we were given any arbitrary image, say a
face. If a small number of affine transformations could generate that face, then it too could
be stored compactly. The trick is finding those numbers. The fractal image compression
scheme described later is one such trick.

Why is it "Fractal" Image Compression?
The image compression scheme described later can be said to be fractal in several

senses. The scheme will encode an image as a collection of transforms that are very similar
to the copy machine metaphor. This has several implications. For example, just as the fern

4

is a set which has detail at every scale, so does the image reconstructed from the transforms
have detail created at every scale. Also, if one scales the transformations defining the fern
(say by multiplying everything by 2), the resulting attractor will be scaled (also by a factor
of 2). In the same way, the decoded image has no natural size, it can be decoded at any
size. The extra detail needed for decoding at larger sizes is generated automatically by the
encoding transforms. One may wonder (but hopefully not for long) if this detail is "real";
that is, if we decode an image of a person at larger and larger size, will we eventually see
skin cells or perhaps atoms? The answer is, of course, no. The detail is not at all related
to the actual detail present when the image was digitized; it is just the product of the
encoding transforms which only encode the large scale features well. However, in some
cases the detail is realistic at low magnifications, and this can be a useful feature of the
method. For example, figure 4 shows a detail from a fractal encoding of Lena along with
a magnification of the original. The whole original image can be seen in figure 6, the now
famous image of Lena which is commonly used in the image compression literature.

The magnification of the original shows pixelization, the dots that make up the image
are clearly discernible. This is because it is magnified by a factor of 4. The decoded image
does not show pixelization since detail is created at all scales.

..~

Figure 4. A portion of Lena's hat decoded at 4
times its encoding size (left), and the original in-
age enlarged to 4 times the size (right), showing
pixelization.

Why is it Fractal Image "Compression"?
Standard image compression methods can be evaluated using their compression ratio;

the ratio of the memory required to store an image as a collection of pixels and the memory
required to store a representation of the image in compressed form. As we saw before, the
fern could be generated from 768 bits of data but required 65,536 bits to store as a collection
of pixels, giving a compression ratio of 65, 536/768 --85.3 to 1.

_55

The compression ratio for the fractal scheme is hard to measure, since the image can
be decoded at any scale. For example, the decoded image in figure 4 is a portion of a 5.7
to 1 compression of the whole Lena image. It is decoded at 4 times it's original size, so
the full decoded image contains 16 times as many pixels and hence its compression ratio
is 91.2 to 1. This may seem like cheating, but since the 4-times-larger image has detail at
every scale, it really isn't.

Iterated Function Systems.
Before we proceed with the image compression scheme, we will discuss the copy ma-

chine example with some notation. Later we will use the same notation for the image
compression scheme, but for now it is easier to understand in the context of the copy
machine example.

Running the special copy machine in a feedback loop is a metaphor for a mathematical
model called an iterated function system (IFS). An iterated function system consists of

a collection of contractive transformations {wi : :2 --+ I i = 1,...,n} which map the
plane R2 to itself. This collection of transformations defines a map

i

The map W is not applied to the plane, it is applied to sets - that is, collections of points
in the plane. Given an input set S, we can compute wi(S) for each i, take the union
of these sets, and get a new set W(S). So W is a map on the space of subsets of the
plane. We will call a subset of the plane an image, because the set defines an image
when the points in the set are drawn in black, and because later we wil want to use the
same notation on graphs of functions which will represent actual images. An important
fact proved by Hutchinson is that when the wi are contractive in the plane, then W is
contractive in a space of (closed and bounded) subsets of the plane. (The "closed and
bounded" part is one of several technicalities that arise at this point. What are these
terms and what are they doing there? The terms make the statement precise and their
function is to reduce complaint-mail writen by mathematicians. Having W contractive is
meaningless unless we give a way of determining distance between two sets. There is such
a metric, called the Haussdorff metric, which measures the difference between two closed
and bounded subsets of the plane, and in this metric W is contractive on the space of
closed and bounded subsets of the plane. This is as much as we will say about these these
details.) Hutchinson's theorem allows us to to use the contractive mapping fixed point
theorem (see box), which tells us that the map W will have a unique fixed point in the
space of all images. That is, whatever image (or set) we start with, we can repeatedly
apply W to it and we will converge to a fixed image. Thus W (or the wi) completely
determine a unique image.

In other words, given an input image fo, we can run the copying machine once to get
f, = W(fo), twice to get f2 = W(fl) = W(W(fo)) = W° 2(fo), and so on. The attractor,
which is the result of running the copying machine in a feedback loop, is the limit set

IWI-fo = im W0° (fo)
t-- 00

6

THE CONTRACTIVE MAPPING FIXED POINT THEOREM
The contractive mapping fixed point theorem says that something that is intuitively

obvious: if a map is contractive then when we apply it repeatedly starting with any initial
point we converge to a unique fixed point. For example, the map w(m) = 1z on the real
line is contractive for the normal metric d(z,y) = Im - y , because the distance between
w(z) and w(y) is half the distance between z and y. Furthermore, if we iterate w from
any initial point z, we get a sequence of points 1z, z, jrac18z,... that converges to the
fixed point 0.

This simple sounding theorem tells us when we can expect a collection of transfor-
mations to define image. Let's write it precisely and examine it carefully.
THE CONTRACTIVE MAPPING FIXED POINT THEOREM. If X is a complete metric
space and W : X --+ X is contractive, then W has a unique fixed point 1W!.

What do these terms mean ? A complete metric space is a "gap-less" space on
which we can measure the distance between any two points. For example, the real line is
a complete metric space with distance between any two points z and y given by Iz - yl.
The set of all fractions of integers, however, is not complete. We can measure the distance
between two fractions in the same way, but between any two elements of the space we
find a real number (that is, a "gap") which is not a fraction and hence is not in the space.
Returning to our example, the map w can operate on the space of fractions, however the
map z i-* Ix cannot. This map is contractive, but after one application of the map we
are no longer in the same space we began in. This is one problem that can occur when we
don't work in a complete metric space. Another problem is that we can find a sequence
of points that do not converge to a point in the space; for example, there are sequences
of fractions that get closer and closer (in fact, arbitrarily close) to V/(2) which is not a
fraction.

A fixed point JWJ E X of W is a point that satisfies W(IWI) = IWI. Our mapping
w(x) = on the real line has a unique fixed point 0 because w(O) = 0.

Proving the theorem is as easy as finding the fixed point: Start with an arbitrary point
x E X. Now iterate W to get a sequence of points x, W(x), W(W(x),... How far can
we get at each step ? Well, the distance between W(x) and W(W(x)) is less by some
factor a < 1 than the distance between x and W(.). So at each step the distance to the
next point is less by some factor than the distance to the previous point. Since we are
taking geometrically smaller steps, and since our space has no gaps, we must eventually
converge to a point in the space which we denote IW! = Won(x). This point is
fixed, because applying W one more time is the same as starting at W(z) instead of x,
and either way we get to the same point.

The fixed point is unique because if we assume that there are two, then we will get
a contradiction: Suppose there are two fixed points x, and X2; then the distance between
W(x1) and W(X2), which is the distance between x, and z 2 since they are fixed points,
would have to be smaller than the distance between x, and X2 ; this is a contradiction.

Thus, the main result we have demonstrated is that when W is contractive, we get
a fixed point

IWI = lim W°"(x)
n.- oo

for any initial x.

7

which is not dependent on the choice of fo. Iterated function systems are interesting in
their own right, but we are not concerned with them specifically. We will generalize the
idea of the copy machine and use it to eDcode grey-scale images; that is, images that are
not just black and white but which contain shades of grey as well.

§2 Self-Similarity in Images.
In the remainder of this article, we will use the term image to mean a grey-scale image.

Images as Graphs of Functions.
In order to discuss the compression of images, we need a mathematical model of an

image. Figure 5 shows the graph of a special function z = f(m, y). This graph is generated
by using the image of Lena (see figure 6) and plotting the grey level of the pixel at position
(z, s) as a height, with white being high and black being low. This is our model for an
image, except that while the graph in figure 5 is generated by connecting the heights
on a 64 x 64 grid, we generalize this and assume that every position (z, y) can have an
independent height. That is, our model of an image has infinite resolution.

Figure 5. A graph generated from the Lena image.
Thus when we wish to refer to an image, we refer to the function f(x, y) which gives the

grey level at each point (X, y). In practice, we will not distinguish between the function f
(which gives us a z value for each z, y coordinate) and the graph of the function (which is a
set in 3 space consisting of the points in the surface defined by f). For simplicity, we assume
we are dealing with square images of size 1; that is, (x,y) E {(u,v) : 0 Uv < 1 - 12,

and f(z, y) E I - [0,1]. We have introduced some convenient notation here: I means the
interval [0, 1] and 12 is the unit square.

A Metric* on Images.
Now imagine the collection of all possible images: clouds, trees, dogs, random junk,

the surface of Jupiter, etc. We want to find a map W which takes an input image and
yields an output image, just as we did before with subsets of the plane. If we want to know

* Recall that a metric is a function that measures distance.

8

when W is contractive, we will have to define a distance between two images. There are
many metrics to choose from, but the simplest to use is the sup metric

8(f,g)= sup f(x,y) - g(x,y). (1)

This** metric finds the position (X,y) where two images f and g differ the most and sets
this value as the distance between f and g.

:::X. :::

Figure 6. The original 256 x 256 pixel Lena image.

Natural Images are not Exactly Self Similar.
A typical image of a face, for example figure 6 does not contain the type of self-

similarity that can be found in the fractals of figure 3. The image does not appear to
contain affine transformations of itself. But, in fact, this image does contain a different
sort of self-similarity. Figure 7 shows sample regions of Lena which are similar at different
scales: a portion of her sholder overlaps a region that is alnost identical, and a portion of
the reflection of the hat in the mirror is similar (after transformation) to a part of her hat.
The distinction from the kind of self-siiiiilarity we saw in figure 3 is that rather than having
the image be formed of copies of its whole self (under appropriate affine transformation),
here the image will be foried of copies of properly transformed parts of itself. These
transformed parts do not fit together, in general, to form an exact copy of the original
image, and so we must allow some error in our representation of an image as a set of
transformations. This means that the image we encode as a set of transformations will not
be an identical copy of the original image but rather an approximation of it.

** There are other possible choices for image models and other possible metrics to use. In fact, the

choice of metric determines whether the transformations we use are contractive or not. These details are

important, but are beyond the scope of this article.

Figure 7. Self similar portions of the Lena image.
In what kind of images can we expect to find this type of self-similarity? Experimental

results suggest that most images that one would expect to "see" can be compressed by
taking advantage of this type of self-similarity; for example, images of trees, faces, houses,
mountains, clouds, etc. However, the existence of this restricted self-similarity and the
ability of an algorithm to detect it are distinct issues, and it is the latter which concerns
us here.

§3 A Special Copying Machine.

Partitioned Copying Machines.

In this section we describe an extension of the copying machine metaphor that can be
used to encode and decode grey-scale images. The partitioned copy machine we will use
has four variable components:

* the number copies of the original pasted together to form the output,
e a setting of position and scaling, stretching, skewing and rotation factors for each

copy.
These features are a part of the copying machine definition that can be used to generate

the images in figure 3. We add to the the following two capabilities:
" a contrast and brightness adjustment for each copy,

" a mask which selects, for each copy, a part of the original to be copied.
These extra features are sufficient to allow the encoding of grey-scale images. The

last dial is the new important feature. It partitions an image into pieces which are each
transformed separately. By partitioning the image into pieces, we allow the encoding of
many shapes that are difficult to encode using an IFS.

Let us review what happens when we copy an original image using this machine. Each
lens selects a portion of the original, which we denote by Di and copies that part (with a

10

brightness and contrast transformation) to a part of the produced copy which is denoted
Ri. We call the Di domains and the Ri ranges. We denote this transformation by wi.
The partitioning is implicit in the notation, so that we can use almost the same notation
as with an IFS. Given an image f, one copying step in a machine with N lenses can be
written as W(f) = W1 (f) U W 2 (f) u... u WN(f). As before the machine runs in a feedback
loop; its own output is fed back as its new input again and again.

Partitioned Copying Machines are PIFS.
We call the mathematical analogue of a partitioned copying machine, a partitioned

iterated function system (PIFS). As before, the definition of a PIFS is not dependent
on the type of transformations that are used, but in this discussion we will use affine
transformations. The grey level adds another dimension, so the transformations wi are of
the form,

r =a di 0 1 A (2)
wi[z]J=[c ai 1 1[]+[,z 0 Si z oi

where si controls the contrast and oi the brightness of the transformation.
It is convenient to write

v,(X,)) [ai 1i][TI+[eci di y Ai

Since an image is modeled as a function f(x, y), we can apply wi to an image f by
wi(f) = wi(x, y, f(x, y)). Then vi determines how the partitioned domains of an original
are mapped to the copy, while si and oi determine the contrast and brightness of the
transformation. It is always implicit, and important to remember, that each wi is restricted
to Di x I, the vertical space above Di. That is, wi applies only to the part of the image
that is above the domain Di. This means that vi(Di) = Ri.

Since we want W(f) to be an image, we must insist that URi = 12 and that R]ilj = 0
when i 5 j. That is, when we apply W to an image, we get some single valued function
above each point of the square V2. Running the copying machine in a loop means iterating
the map W. We begin with an initial image fo and then iterate f, = W(fo), f 2 = W(fl) =
W(W(f 0)), and so on. We denote the n-th iterate by fn = W°(f0).

Fixed points for PIFS.
In our case, a fixed point is an image f that satisfies W(f) = f; that is, when we

apply the transformations to the image, we get back the original image. The contractive
mapping theorem says that the fixed point of W will be the image we get when we compute
the sequence W(fo),W(W(fo)),W(W(W(fo))),..., where fo is any image. So if we can
be assured that W is contractive in the space of all images, then it will have a unique fixed
point which will then be some image.

Since the metric we chose in equation 1 is only sensitive to what happens in the z
direction, it is not necessary to impose contractivity conditions in the x or y directions.
The transformation W will be contractive when each si < 1; that is, when z distances are

11

shrunk by a factor less than 1. In fact, the contractive mapping principle can be applied
to W r (for some m), so it is sufficient for W rn to be contractive. This leads to the
somewhat surprising result that there is no specific condition on any specific si either. In
practice, it is safest to take a, < 1 to ensure contractivity. But we know from experiments
that taking .9 < 1.2 is safe, and that this results in slightly better encodings.

Eventually Contractive Maps.
When W is not contractive and W r is contractive, we call W eventually contractive.

A brief explanation of how a transformation W can be eventually contractive but not
contractive is in order. The map W is composed of a union of maps wi operating on disjoint
parts of an image. The iterated transform W ° n is composed of a union of compositions of
the form

Wil OWi 2 0 .. Wim•

It is a fact that the product of the contractivities bounds the contractivity of the composi-
tions, so the compositions will be contractive if each contains sufficiently contractive wi,.
Thus W will be eventually contractive (in the sup metric) if it contains sufficient "mixing"
so that the contractive wi eventually dominate the expansive ones. In practice, given a
PIFS this condition is simple to check in the sup metric.

Suppose that we take all the si < 1. This means that when the copying machine is
run, the contrast is always reduced. This seems to suggest that when the machine is run
in a feedback loop, the resulting attractor will be an insipid, contrast-less grey. But this
is wrong, since contrast is created between ranges which have different brightness levels
oi. So is the only contrast in the attractor between the Ri? No, if we take the vi to
be contractive, then the places where there is contrast between the Ri in the image will
propagate to smaller and smaller scale, and this is how detail is created in the attractor.
This is one reason to require that the vi be contractive.

We now know how to decode an image that is encoded as a PIFS. Start with any
initial image and repeatedly run the copy machine, or repeatedly apply W until we get
close to the fixed point f,,. We will use Hutchinson's notation and denote this fixed point
by f.. = jWj. The decoding is easy, but it is the encoding which is interesting. To encode
an image we need to figure out Ri,Di and wi, as well as N, the number of maps wi we
wish to use.

§4 Encoding Images.
Suppose we are given an image f that we wish to encode. This means we want to find

a collection of maps w1, W2 .. . , WN with W = UVl wi and f W W. That is, we want f to
be the fixed point of the map W. The fixed point equation

f = W(f) = Wf) uW 2 (f) U .. WN(f)

suggests how this may be achieved. We seek a partition of f into pieces to which we apply
the transforms wi and get back f. This is too much to hope for in general, since images
are not composed of pieces that can be transformed non-trivially to fit exactly somewhere
else in the image. What we can hope to find is another image f' = IWI with 5(f', f) small.

12

That is, we seek a transformation W whose fixed point f = IW is close to, or looks like,
f. In that case,

f f' = W(f') W(f) - w1(f) U W2 (f) U ... WN(f).

Thus it is sufficient to approximate the parts of the image with transformed pieces. We
do this by minimizing the following quantities

b n(R, x),wCf)) i = ,...,t¢ (4)

That is, we find pieces Di and maps wi, so that when we apply a wi to the part of the image
over Di, we get something that is very close to the part of the image over Ri. Finding the
pieces Ri (and corresponding D,) is the heart of the problem.

A Simple Illustrative Example.

The following example suggest how this can be done. Suppose we are dealing with
a 256 x 256 pixel image in which each pixel can be one of 256 levels from grey (ranging
from black to white). Let R 1 , R 2 ,... , R1024 be the 8 x 8 pixel non-overlapping sub-squares
of the image, and let D be the collection of all 16 x 16 pixel (overlapping) sub-squares
of the image. The collection D contains 241 • 241 = 58,081 squares. For each Ri search
through all of D to find a Di E D which minimizes equation 4; that is, find the part
of the image that most looks like the image above Ri. This domain is said to cover the
range. There are 8* ways to map one square onto another, so that this means comparing
8 .58,081 = 464,648 squares with each of the 1024 range squares. Also, a square in D has
4 times as many pixels as an Ri, so we must either subsample (choose 1 from each 2 x 2
sub-square of D,) or average the 2 x 2 sub-squares corresponding to each pixel of Ri when
we minimize equation 4.

Minimizing equation 4 means two things. First it means finding a good choice for Di
(that is the part of the image that most looks like the image above Ri). Second, it means
finding a good contrast and brightness setting si and oi for wi. For each D E D we can
compute si and oi using least squares regression (see box), which also gives a resulting
root mean square (rms) difference. We then pick as Di the D E D which has the least rms
difference.

A choice of Di, along with a corresponding si and oi, determines a map wi of the
form of equation 2. Once we have the collection w 1 , ... , W1 024 we can decode the image by
estimating IWi. Figure 8 shows four images: an arbitrary initial image fo chosen to show
texture, the first iteration W(fo), which shows some of the texture from fo, W°2 (fo), andw01°(fo).

* The square can be rotated to 4 orientations or fliped and rotated into 4 other orientations, but that

is all.

13

m a~mmm mmmm mmmmm mmm~m~m mlmmlmlmmllmmmNmmm mm N 8m m m

.* . .m~.

................

........ N*.

...........

...........

F ..r.... riinl.mg..h.frsseod n
..... t.........f.heenc..g.tanfom....ii

resi I issurrisngy godgivn te niv naureof.he..coin.alori.I.i..Th
oriinlr... re..556.yt..f.torge.wer.a.te. r soi aio s Furird nl

39ti....... X$,gvn ozpcsoirto f1.: ih hsecdn - 1.4 andeac
pi~e is n avrageonly6.2 rey evel awa.froi..te.corectvalu..Fiure..shos.ho

(le adiSad~ed t ach itraion Tle irs ieraioncotais letailatsiz 8 , he eN
at sze 44, nd S on

* ~ ~ ~ ~ -aht.xfrutoIr'tie it nteXa1lydrcint cerni'tepst1)1o),7bt
for~~ A.51jsfr ~ ai)tSt ltrnn oato n lp o eail o la plgJ~ I ?

........... '1::

LEAST SQUARES
Given two squares containing n pixel intensities, al,... ,an (from D,) and bl,...,bn

(from R,). We can seek a and o to minimize the quantity

R = E(s.- a, + o - bj)' .

i=1

This will give us a contrast and brightness setting that makes the affinely transformed
ai values have the least squared distance from the bi values. The minimum of R occurs
when the partial derivatives with respect to . and o are zero, which occurs when

an = [(a/b1) - (a,)(b,)] / - a)

i=1 i=1 ==1 1 i=1

and

If n2 i _ . 0 ai /n 2

In that case,

bi Eai-2(E aibi) + 2o E aj) + o(on - 2 Ebi) /n 2 5

i=1 i=1 i=1 i=1 =

If , j2 I'= is-('=I ,) = 0, then .9 = 0 and o = '= b,/n .

Jacquin [J] encoded images with less grey levels using a method similar to this example
but with two sizes of ranges. In order to reduce the number of domains searched, he also
classified the ranges and domains by their edge (or lack of edge) properties. This is very
similar, coincidentally, to the scheme used by Boss and Jacobs [BIF] to encode contours.

A Note About Metrics.
Two men flying in a balloon are sent off track by a strong gust of wind. Not knowing

where they are, they approach a solitary figure perched on a hill. They lower the balloon
and shout the the man on the hill, "Where are we?". There is a very long pause, and
then the man shouts back, "You are in a balloon." The first man in the balloon turns to
the second and says, "That man was a mathematician." Completely amazed, the second
man asks, "How can you tell that?". Replies the first man, "We asked him a question, he
thought about it for a long time, his answer was correct, and it was totally useless." This
is what we have done with the metrics. When it came to a simple theoretical motivation,
we use the sup metric which is very convenient for this. But in practice, we are happier
using the rms metric which allows us to make least square computations. (We could have
worked with the rms metric, of course, but checking contractivity in this metric is much
harder).

15

§5 Ways to Partition Images.
The example of the last section is naive and simple, but it contains most of the ideas

of a fractal image encoding scheme. First partition the image by some collection of ranges
R,. Then for each Ri seek from some collection of image pieces a Di which has a low rms
error. The sets Ri and D, determine si and oi as well as ai,bi,ci, di,ej and fi in equation
2. We then get a transformation W = Uwi which encodes an approximation of the original
image.

Quadtree Partitioning.
A weakness of the example is the use of fixed size Ri, since there are regions of the

image that are difficult to cover well this way (for example, Lena's eyes). Similarly, there
are regions that could be covered well with larger Ri, thus reducing the total number of
wi maps needed (and increasing the compression of the image). A generalization of the
fixed size Ri is the use of a quadtree partition of the image. In a quadtree partition, a
square in the image is broken up into 4 equally sized sub-squares, when it is not covered
well enough by a domain. This process repeats recursively starting from the whole image
and continuing until the squares are small enough to be covered within some specified rms
tolerance. Small squares can be covered better than large ones because contiguous pixels
in an image tend to be highly correlated.

Figure 9. A collie (256 x 256) compressed with the
quadtree scheme at 28.95:1 with an rms error of
8.5.

An algorithm that works well for encoding 256 x 256 pixel images based on this idea
can proceed as follows (see [FJB1]). Choose for the collection D of permissible domains
all the sub-squares in the image of size 8,12,16,24,32,48 and 64. Partition the image
recursively by a quadtree method until the squares are of size 32. For each square in
the quadtree partition, attempt to cover it by a domain that is larger; this makes the vi

16

contractive. If a predetermined tolerance rms value ec is met, then call the square Ri and
the covering domain Di. If not, then subdivide the square and repeat. This algorithm
works well. It works even better if diagonally oriented squares are used in the domain pool
D also. Figure 9 shows an image of a collie compressed using this scheme. In section 6
we discuss some of the details of this scheme as well as the other two schemes discussed
below.

HV-Partitioning.
A weakness of the quadtree based partitioning is that it makes no attempt to select the

domain pool D in a content dependent way. The collection must be chosen to be very large
so that a good fit to a given range can be found. A way to remedy this, while increasing
the flexibility of the range partition, is to use an HV-partition. In an HV-partition, a
rectangular image is recursively partitioned either horizontally or vertically to form two
new rectangles. The partitioning repeats recursively until a covering tolerance is satisfied,
as in the quadtree scheme.

Figure 11. The HV scheme attempts to create self
similar rectangles at different scales.

Figure 10. San Francisco (256 x 256) compressed
with the HV scheme at 7.6:1 with an rms error of
7.1.

This scheme is more flexible, since the position of the partition is variable. We can
then try to make the partitions in such a way that they share some self similar structure.
For example, we can try to arrange the partitions so that edges in the image will tend to
run diagonally through them. Then, it is possible to use the larger partitions to cover the
smaller partitions with a reasonable expectation of a good cover. Figure 11 demonstrates
this idea. The figure shows a part of an image (a); in (b) the first partition generates two

17

rectangles, R, with the edge running diagonally through it, and R 2 with no edge; and in
(c) the next three partitions of R, partition it into 4 rectangles, two rectangles which can
be well covered by R, (since they have an edge running diagonally) and two which can be
covered by R2 (since they contain no edge). Figure 10 shows an image of San Francisco
encoded using this scheme.

Triangular Partitioning.

Yet another way to partition an image is based on triangles. In the triangular parti-
tioning scheme, a rectangular image is divided diagonally into two triangles. Each of these
is recursively subdivided into 4 triangles by segmenting the triangle along lines that join
three partitioning points along the three sides of the triangle. This scheme has several
potential advantages over the HV-partitioning scheme. It is flexible, so that triangles in
the scheme can be chosen to share self-similar properties, as before. The artifacts arising
from the covering do not run horizontally and vertically, and this is less distracting. Also,
the triangles can have any orientation, so we break away from the rigid 90 degree rotations
of the quadtree and HV partitioning schemes. This scheme, however, remains to be fully
developed and explored.

Figure 12 shows sample partitions arising from the three partitioning schemes applied
to the Lena image.

Figure 12. A quadtree partition (5008 squares), an
HY partition (2910 rectangles), and a triangular
partition (2954 triangles).

§6 Implementation Notes.

The pseudo-code in Table 1 shows two ways of encoding images using the idea pre-
sented. One method attempts to target a fidelity by finding a covering such that equation

18

Table 1. Two pseudo-codes for an adaptive encoding algorithm
" Choose a tolerance level ec.
" Set R, = 12 and mark it uncovered.
" While there are uncovered ranges Ri do

" Out of the possible domains D, find the domain Di
and the corresponding wv which best covers Ri (i.e.
which minimizes expression (4)).

" If 6(f n (R x I),twi(f)) < e, or size(Ri) < ri then
e Mark R, as covered, and write out the transf or-

mation wi ;
" else

e Partition Ri into smaller ranges which are
marked as uncovered, and remove Ri from the list
of uncovered ranges.}

a. Pseudo-code targeting a fidelity e,.

" Choose a target number of ranges N,.
" Set a list to contain R1 = 12, and mark it as uncovered.
" While there are uncovered ranges in the list do {

" For each uncovered range in the list, find and store
the domain D E D and map wi which covers it best,
and mark the range as covered.

" Out of the list of ranges, find the range Rj with
size(Rj) > r.., which has the largest

6(f n (R x I), w(f)

(i.e. which is covered worst).
" If the number of ranges in the list is less than N,

then {
e Partition Ri into smaller ranges which are added

to the list and marked as uncovered.
* Remove Ri,wj and Dj from the list.

}
}

* Write out all the wi in the list.

b. Pseudo-code targeting a compression having N transformations.

4 is below some criterion e,. The other method attempts to target a compression ratio by

limiting the number of transforms used in the encoding.

Storing the Encoding Compactly.
To store the encoding compactly, we do not store all the coefficients in equation 2.

The contrast and brightness settings are stored using a fixed number of bits. One could

compute the optimal a9 and oi and then discretize them for storage. However, a significant

19

improvement in fidelity can be obtained if only discretized sa and oi values are used when
computing the error during encoding (and equation 5 facilitates this). Using 5 bits to store
ai and 7 bits to store oi has been found empirically optimal in general. The distribution of
ai and oi shows some structure, so further compression can be attained by using entropy
encoding.

The remaining coefficients are computed when the image is decoded. In their place
we store Ri and Di. In the case of a quadtree partition, Ri can be encoded by the storage
order of the transformations if we know the size of Ri. The domains Di must be stored
as a position and size (and orientation if diagonal domain are used). This is not sufficient,
though, since there are 8 ways to map the four corners of Di to the corners of Ri. So we
also must use 3 bits to determine this rotation and flip information.

In the case of the HV-partitioning and triangular partitioning, the partition is stored
as a collection of offset values. As the rectangles (or triangles) become smaller in the
partition, fewer bits are required to store the offset value. The partition can be completely
reconstructed by the decoding routine. One bit must be used to determine if a partition
is further subdivided or will be used as an Ri and a variable number of bits must be used
to specify the index of each Di in a list of all the partition. For all three methods, and
without too much effort, it is possible to achieve a compression of roughly 31 bits per wi
on average.

In the example of section 4, the number of transformations is fixed. In contrast, the
partitioning algorithms described are adaptive in the sense that they utilize a range size
which varies depending on the local image complexity. For a fixed image, more transfor-
mations lead to better fidelity but worse compression. This trade-off between compression
and fidelity leads to two different approaches to encoding an image f - one targeting fi-
delity and one targeting compression. These approaches are outlined in the pseudo-code
in table 1. In the table, size(Ri) refers to the size of the range; in the case of rectangles,
size(R,) is the length of the longest side.

Acknowledgements
This work was partially supported by ONR contract N00014-91-C-0177. Other sup-

port was provided by the San Diego Super Computer Center; the Institute for Non-Linear
Science at the University of California, San Diego; and the Technion Israel Institute of
Technology.

20

REFERENCES

[B] Barnsley, M. Fractals Everywhere. Academic Press. San Diego, 1989.
[BJJ R.D. Boss, E.W. Jacobs, "Fractal-Based Image Compression," NOSC Technical Re-

port 1315, September 1989. Naval Ocean Systems Center, San Diego CA 92152-5000.
[FJB] Y. Fisher, E.W. Jacobs, and R.D. Boss, "Fractal Image Compression Using Iterated

Transforms," to appear in Data Compression, J. Storer, Editor, Kluwer Academic
Publishers, Norwall, MA.

[FJB1] Y. Fisher, E.W. Jacobs, and R.D. Boss, "Fractal Image Compression Using Iterated
Transforms," NOSC Technical Report ???, Naval Ocean Systems Center, San Diego
CA 92152-5000.

[H] John E. Hutchinson, Fractals and Self Similarity. Indiana University Mathamatics
Journal, Vol. 35, No. 5. 1981.

[J] Jacquin, A., A Fractal Theory of Iterated Markov Operators with Applications to
Digital Image Coding, Doctoral Thesis, Georgia Institute of Technology, 1989.

[JBF] R.D. Boss, E.W. Jacobs, "Fractal-Based Image Compression II," NOSC Technical
Report 1362, June 1990. Naval Ocean Systems Center, San Diego CA 92152-5000.

[JFB] E.W. Jacobs, Y. Fisher, and R.D. Boss, "Image Compression: A Study of the Iterated
Transform Method," to appear in Signal Processing.

[P1] "The Science of Fractals", H.-O. Peitgen, D. Saupe, Editors, Springer Verlag, New
York, 1989.

[P2] "Fractals For Class Room", H.-O. Peitgen, D. Saupe, H. Jurgens, Springer Verlag,
New York, 1991.

[WK] E. Walach, E. Karnin, "A Fractal Based Approach to Image Compression", Proceed-
ings of ICASSP Tokyo, 1986.

21

